Share "Klasówka V. Sprawdź, czy rozwiązaniem równania 8 x 9 = 11 jest podana liczba. Podkreśl TAK lub NIE. a) 3 TAK NIE b) 2, 5 TAK NIE"
Rozwiązując pewne równanie metodą równań równoważnych, otrzymaliśmy równość 0 = 2. Wnioskujemy stąd, że: A. równanie nie ma rozwiązania. B. rozwiązaniem równania jest liczba 2. C. popełniliśmy błąd w obliczeniach. D. rozwiązaniami równania są wszystkie liczby rzeczywiste, dla których równanie ma sens.
6-każda liczba rzeczywista jest rozwiązaniem równania 3(x-3)=3x+9 A)prawda B)fałsz 7-trójkąt równoramienny ma podstawę o długości 2 cm i ramiona o długości 4 cm. Musimy policzyć o ile trzeba wydłużyć ramiona tego trójkąta aby obwód był dwukrotnie większy, a mimo tego trójkąt pozostawiał równoramienny .Możemy to zrobić
Sprawdz czy liczba 3 jest rozwiązaniem rownania 3 * x + 5 = 18 - 4 Sprawdz czy liczba 2 jest rozwiązaniem rown… Natychmiastowa odpowiedź na Twoje pytanie.
Wiadomo, że jądro przekształcenia liniowego jest podprzestrzenią liniową. Wzór (5.3) wskazuje, że jądro operatora L jest jednowymiarowe i bazą tej przestrzeni jestfunkcjaexp{− R t t 0 p(s)ds}. Rozwiązaniarównania(5.1)można więc opisać używając operatora L. Twierdzenie 5.6. Dany jest operator L(x(t)) = x0(t)+p(t)x(t). Wówczas
że para liczb (a, b) jest rozwiązaniem nierówności y – x + 2 > 0, jeżeli wiadomo, że liczba b jest nieujemna. Zadanie 16. (0–5) Wykaż, że dla każdej liczby rzeczywistej m prosta opisana równaniem mx – y + 5 – 4 m = 0 przecina okrąg o: x2 + y2 – 8x – 10y + 25 = 0 w dwóch punktach, których suma odciętych jest równa 8
q4aEpT.
sennheiser123 Użytkownik Posty: 58 Rejestracja: 26 kwie 2012, o 14:51 Płeć: Mężczyzna Lokalizacja: krakow Podziękował: 14 razy Liczba rozwiązań równania jest równa Liczba rozwiązań równania \(\displaystyle{ x^{3} - 2x^{2} + 9x - 18 = 0}\) jest równa: A \(\displaystyle{ \ 0}\) B \(\displaystyle{ \ 1}\) Jak takie równanie rozwiązać? Ostatnio zmieniony 6 maja 2012, o 14:11 przez Jan Kraszewski, łącznie zmieniany 2 razy. Powód: Poprawa wiadomości. Temat umieszczony w złym dziale. loitzl9006 Moderator Posty: 3050 Rejestracja: 21 maja 2009, o 19:08 Płeć: Mężczyzna Lokalizacja: Starachowice Podziękował: 29 razy Pomógł: 816 razy Liczba rozwiązań równania jest równa Post autor: loitzl9006 » 6 maja 2012, o 13:38 Poprzez grupowanie wyrazów rozwiąż. Odp. B sennheiser123 Użytkownik Posty: 58 Rejestracja: 26 kwie 2012, o 14:51 Płeć: Mężczyzna Lokalizacja: krakow Podziękował: 14 razy Liczba rozwiązań równania jest równa Post autor: sennheiser123 » 6 maja 2012, o 13:47 więc wyglądać to powinno tak? \(\displaystyle{ (x^{3} - 2x^{2})-(9x - 18) = x^{2}(x-2)+ 9(x-2) = (x - 2)( x^{2} + 9)}\) loitzl9006 Moderator Posty: 3050 Rejestracja: 21 maja 2009, o 19:08 Płeć: Mężczyzna Lokalizacja: Starachowice Podziękował: 29 razy Pomógł: 816 razy Liczba rozwiązań równania jest równa Post autor: loitzl9006 » 6 maja 2012, o 14:47 Zgadza się (w sensie że wynik końcowy dobry), choć tutaj:\(\displaystyle{ (x^{3} - 2x^{2}) \red - \black (9x - 18)}\) powinien być plus. loitzl9006 Moderator Posty: 3050 Rejestracja: 21 maja 2009, o 19:08 Płeć: Mężczyzna Lokalizacja: Starachowice Podziękował: 29 razy Pomógł: 816 razy Liczba rozwiązań równania jest równa Post autor: loitzl9006 » 6 maja 2012, o 14:51 Dlatego że równanie ma jedno rozwiązanie (jakie?)
a) -2x = 0 x = 0 b) 5y+5 = 5 5y = 5-5 5y = 0 y = 0 c) 2z-7 = 7 2z = 7+7 2z = 14/2 z = 7 d) 7t+9t = 0 16t = 0 t = 0 e) 3+11d = 0 11d = -3/:11 d = -3/11 Odp. liczba 0 jest rozwiązaniem dla przykładu a,b,d
Dovv90 Użytkownik Posty: 243 Rejestracja: 12 mar 2011, o 15:39 Płeć: Mężczyzna Lokalizacja: Polska Podziękował: 153 razy Wiadomo, że liczba x jest niewymierna. Witam, mam takie zadanie: wiadomo, że liczba x jest liczbą niewymierną. Niewymierna jest też na pewno liczba: \(\displaystyle{ x^2}\) \(\displaystyle{ 2x}\) \(\displaystyle{ \frac{ \sqrt{2} }{x}}\) \(\displaystyle{ x+ \sqrt{2}}\) No i tak- myślalem zeby wziac jakas liczbe niewymierną, więc wziąłem \(\displaystyle{ \sqrt{27}}\) No i podstawiałem pod te liczby i w trzech przypadach wyszło mi: \(\displaystyle{ \sqrt{27} ^2=27}\) WYMIERNA \(\displaystyle{ 2 \sqrt{27}}\) NIEWYMIERNA? \(\displaystyle{ \frac{ \sqrt{2} }{ \sqrt{27} } = \frac{ \sqrt{2} }{3 \sqrt{3} }}\) NIEWYMIERNA? \(\displaystyle{ \sqrt{27} + \sqrt{2} =3 \sqrt{3} + \sqrt{2}}\) NIEWYMIERNA? Nie wiem, to jakoś inaczej trzeba zrobić? Nie mam do tego takiej odpowiedzi, że aż trzy będą niewymierne. Z góry dziękuję Pozdrawiam norwimaj Użytkownik Posty: 5101 Rejestracja: 11 mar 2011, o 16:31 Płeć: Mężczyzna Lokalizacja: 52°16'37''N 20°52'45''E Podziękował: 4 razy Pomógł: 1001 razy Wiadomo, że liczba x jest niewymierna. Post autor: norwimaj » 4 lut 2013, o 19:11 To, co zrobiłeś, pozwala na stwierdzenie, że odpowiedź a) jest niepoprawna. Podstawiając inne liczby powinieneś wywnioskować, że odpowiedzi c) i d) też są niepoprawne. Odpowiedź b) jest poprawna, co można udowodnić nie wprost. Althorion Użytkownik Posty: 4541 Rejestracja: 5 kwie 2009, o 18:54 Płeć: Mężczyzna Lokalizacja: Wrocław Podziękował: 9 razy Pomógł: 662 razy Wiadomo, że liczba x jest niewymierna. Post autor: Althorion » 4 lut 2013, o 19:22 Jeśli interesują Cię kontrprzykłady dla pozostałych, to dla \(\displaystyle{ \sqrt{2}}\) wymierne jest c), a dla \(\displaystyle{ -\sqrt{2}}\) d). Dovv90 Użytkownik Posty: 243 Rejestracja: 12 mar 2011, o 15:39 Płeć: Mężczyzna Lokalizacja: Polska Podziękował: 153 razy Wiadomo, że liczba x jest niewymierna. Post autor: Dovv90 » 4 lut 2013, o 23:34 Hmm, dzięki za obie odpowiedzi, ale chyba się pogubiłem. To znaczy tutaj mam waszą pomoc, ale dlaczego jak podstawiłem \(\displaystyle{ \sqrt{27}}\) to nie zgadza się z odpowiedziami, a jak wy sobie obliczyliście dla innych niewymiernych liczb to się zgadza. O co tu chodzi? Podzielcie się tajemną wiedzą. Althorion Użytkownik Posty: 4541 Rejestracja: 5 kwie 2009, o 18:54 Płeć: Mężczyzna Lokalizacja: Wrocław Podziękował: 9 razy Pomógł: 662 razy Wiadomo, że liczba x jest niewymierna. Post autor: Althorion » 4 lut 2013, o 23:48 W zadaniu pytali Cię o to, czy dana liczba nie może być w ogóle wymierną (użyto sformułowania „niewymierna jest też na pewno”). Ty pokazałeś, że czasami bywa, a to w ogóle bez znaczenia. Ja pokazałem, że w c) i d) są takie liczby, dla których nie jest (czyli już nie jest zawsze niewymierna), norwimaj podpowiedział Ci, w jaki sposób wykazać, że b) działa w każdej sytuacji. Dovv90 Użytkownik Posty: 243 Rejestracja: 12 mar 2011, o 15:39 Płeć: Mężczyzna Lokalizacja: Polska Podziękował: 153 razy Wiadomo, że liczba x jest niewymierna. Post autor: Dovv90 » 6 lut 2013, o 17:27 Okej, ale uprośćmy to bo do wigilii tego nie zrozumiem. Po prostu- jaka jest metoda na to żeby sprawdzić w tym wypadku czy dana liczba jest niewymierna? Ja nie rozumiem na czym polega wasza metoda, mi cały czas wychodzi, że trzy z nich są niewymierne (jak podstawiam pod x np. \(\displaystyle{ \sqrt{3}}\) albo \(\displaystyle{ \sqrt{27}}\)) Althorion Użytkownik Posty: 4541 Rejestracja: 5 kwie 2009, o 18:54 Płeć: Mężczyzna Lokalizacja: Wrocław Podziękował: 9 razy Pomógł: 662 razy Wiadomo, że liczba x jest niewymierna. Post autor: Althorion » 6 lut 2013, o 18:21 Nie, Tobie wychodzi, że czasem (dla niektórych liczb) są niewymierne. To jest prawdą, ale też nie o to pytają. W zadaniu nie chodzi o czasem, chodzi o zawsze, nie wystarczy więc sprawdzić niektórych liczb, trzeba sprawdzić wszystkie lub odgadnąć występującą zależność. Dovv90 Użytkownik Posty: 243 Rejestracja: 12 mar 2011, o 15:39 Płeć: Mężczyzna Lokalizacja: Polska Podziękował: 153 razy Wiadomo, że liczba x jest niewymierna. Post autor: Dovv90 » 7 lut 2013, o 13:40 Dzięki Althorion. Rozumiem różnicę między tym kiedy czasem są wymierne a kiedy zawsze. Zgodnie z tym muszę odgadnąć występującą zależność lub sprawdzić wszystkie. I to własnie jest moim pytaniem- jak odgadnąć te występującą zależność (bo zeby podstawic wszystkie to troche zajmie ). Jaki zastosować tu tok rozumowania, tak najprościej mówiąc, jeśli bym spotkał się z takim zadaniem? norwimaj Użytkownik Posty: 5101 Rejestracja: 11 mar 2011, o 16:31 Płeć: Mężczyzna Lokalizacja: 52°16'37''N 20°52'45''E Podziękował: 4 razy Pomógł: 1001 razy Wiadomo, że liczba x jest niewymierna. Post autor: norwimaj » 7 lut 2013, o 14:15 d) Możesz wylosować sobie jakąś liczbę wymierną \(\displaystyle{ q}\) i rozwiązać równanie \(\displaystyle{ x+\sqrt{2}=q}\). Na przykład dla \(\displaystyle{ q=1}\) mamy \(\displaystyle{ x+\sqrt2=1}\), czyli \(\displaystyle{ x=1-\sqrt2}\). I akurat się udało, bo \(\displaystyle{ 1-\sqrt2}\) jest liczbą niewymierną, zatem mamy kontrprzykład. b) Rozwiązaniem równania \(\displaystyle{ 2x=q}\) jest \(\displaystyle{ x=\frac q2}\). Tutaj nawet jeśli będziesz próbował wstawiać różne liczby wymierne, to szybko zauważysz, że znalezienie kontrprzykładu jest niemożliwe.
breti Użytkownik Posty: 148 Rejestracja: 7 gru 2011, o 18:40 Płeć: Kobieta Podziękował: 40 razy rozwiązaniem równania jest Rozwiązaniem równania : \(\displaystyle{ 2x+4+ \frac{8}{x} +........= \lim_{ n\to \infty } \frac{5-16n}{3n+1}}\) jest: a) \(\displaystyle{ x=-4}\) b) \(\displaystyle{ x= \frac{4}{3}}\) c) \(\displaystyle{ x=4}\) d) \(\displaystyle{ x=- \frac{4}{3}}\) ??? Dasio11 Moderator Posty: 9828 Rejestracja: 21 kwie 2009, o 19:04 Płeć: Mężczyzna Lokalizacja: Wrocław Podziękował: 38 razy Pomógł: 2230 razy rozwiązaniem równania jest Post autor: Dasio11 » 30 gru 2011, o 09:58 Ile równa się wyrażenie po lewej stronie i przy jakich założeniach? Jaka liczba stoi po prawej stronie równania? breti Użytkownik Posty: 148 Rejestracja: 7 gru 2011, o 18:40 Płeć: Kobieta Podziękował: 40 razy rozwiązaniem równania jest Post autor: breti » 30 gru 2011, o 14:14 no właśnie ja tego w ogóle nie rozumiem. Nie wiem od czego zacząć, co z tym zrobić i dlaczego ;/ Tmkk Użytkownik Posty: 1725 Rejestracja: 15 wrz 2010, o 15:36 Płeć: Mężczyzna Lokalizacja: Ostrołęka Podziękował: 59 razy Pomógł: 501 razy rozwiązaniem równania jest Post autor: Tmkk » 30 gru 2011, o 14:25 Najpierw musisz policzyć prawą stronę, czyli granicę ciągu. Bez tego dalej nie da rady. breti Użytkownik Posty: 148 Rejestracja: 7 gru 2011, o 18:40 Płeć: Kobieta Podziękował: 40 razy rozwiązaniem równania jest Post autor: breti » 30 gru 2011, o 14:34 czyli że granica dąży do \(\displaystyle{ - \infty}\) ? To jest granica? -- 30 gru 2011, o 14:36 -- czy tez do -6?-- 30 gru 2011, o 14:45 --czy tez granicą jest może liczba \(\displaystyle{ - \frac{16}{3}}\) czyli \(\displaystyle{ -5 \frac{1}{3}}\)?? Tmkk Użytkownik Posty: 1725 Rejestracja: 15 wrz 2010, o 15:36 Płeć: Mężczyzna Lokalizacja: Ostrołęka Podziękował: 59 razy Pomógł: 501 razy rozwiązaniem równania jest Post autor: Tmkk » 30 gru 2011, o 14:56 Tak, granica to \(\displaystyle{ - \frac{16}{3}}\). Aby ta granica była sumą tego szeregu, musi on być zbieżny. Znasz warunek, ktory musi zajść, aby szereg geometryczny był zbieżny? breti Użytkownik Posty: 148 Rejestracja: 7 gru 2011, o 18:40 Płeć: Kobieta Podziękował: 40 razy rozwiązaniem równania jest Post autor: breti » 30 gru 2011, o 16:20 nie bardzo:/
wiadomo że liczba a jest rozwiązaniem równania